
The three main compiler based techniques for
full temporal memory safety

Jori Winderickx

KU Leuven

1 Introduction

Low level programming languages are preferred for high performance
applications but programmers often struggle to implement the manual
memory management. Due to the high performance requirements, mem-
ory management is often omitted and programmers need to manually
allocate and deallocate the pointers and values in the memory. However,
manual memory management can get tedious in larger applications and
can result in unexpected behaviour if the memory is not handled correctly.
For example, a memory location is freed but the reference is still present
and can cause unexpected behaviour because the referenced data is no
longer present. The memory errors that can occur are called spatial and
temporal memory errors. In higher level programming languages these
problems are not common because often memory management is already
present. This also causes that they are often slower due to the checks
involved for memory management. A lot of research has been done in this
area and often solutions that provide partial countermeasures, however
with a high performance, are proposed. Countermeasures with full cover-
age of memory safety also exist and is currently used in implementations,
with each having its trade-o↵ in terms of performance, size and usage
wise.

A programmer needs to decide which is the right technique for the ap-
plication. Mostly low level languages are chosen when high performance is
necessary or when there are real-time requirements. In these cases the per-
formance can be provided, however memory safety needs to be provided
to counter unexpected errors. In this essay the three main techniques that
provide full temporal memory safety will be discussed, namely garbage
collectors, ownership types and pointer-based checking.

In this essay, first temporal memory errors will be explained. After
that the three main techniques to fully prevent these errors will be ex-
plored by means of example. Furthermore for each technique the compat-

ibility, with legacy code, and the performance will be discussed to provide
a overview of the major advantages and disadvantages.

2 Temporal memory safety

Manual memory management can lead to temporal memory safety vio-
lations. These temporal memory safety violations occur when accessing
memory locations that have already been deallocated, also called dan-
gling pointers. This means that the pointers after deallocation are still
pointing to the locations in the memory that do not contain valid data
anymore. As a result these locations can be corrupted, by writing, or
falsely interpreted as valid data.

Temporal memory safety is often only an issue for low level program-
ming languages because memory management is not automatically a fea-
ture. This is because memory management takes time. The objects in
the memory need to be identified, if they are not tracked. Furthermore
the objects need to be structured in the memory so that the memory
stack can be e�ciently used. A way to provide memory management for
low level programming languages is to do it manually, allocate and pop
the objects from the memory as the program runs. Then problems like
temporal memory errors can occur.

In real time applications timing is critical and every event needs to be
handled as quick as possible. If the memory management would take too
much time to process the memory, the timing may not meet the timing
constraints. In this case a high performance technique should be used,
however with high performance guarantees often comes other design lim-
itations. For example the memory usage of the memory safety technique
could be to large or the program must be written in a di↵erent style than
the programmer is used to.

The reason that these violations or errors should be countered is that
they can cause unpredictable behaviour of programs. For example, a
pointer to a date is created and the date is for example used to time
an event. If for some reason the pointer would have been deallocated the
date itself would be removed from the memory, however without memory
safety the pointer to the date could still be used. In this case the date
could be falsely interpreted and used to trigger the provided event causing
an unexpected behaviour.

These violations can occur in the stack and the heap, examples created
by Nagarakatte et al. [1] are shown in Fig. 1. The example on the left
causes a violation on the heap. First pointer p is allocated and then

pointer q is made a copy of p, both pointers point to the same location
on the heap. Then by freeing p, q becomes a dangling pointer since it
still points to the freed location on the heap. After the free up of p, the
memory pointed to by q can be reallocated by r or any subsequent call
to malloc(). The example on the right displays a violation on the stack.
The program has a global pointer, this pointer is allocated in the foo()
function. The memory allocation of integer a has a local scope and will
be popped after foo() returns. This results in the dangling pointer q,
pointing to the location of the already popped integer a. At the end of
both programs, the memory locations pointed to by q can still be used
and therefore causing a temporal memory safety issue.

Heap based

int ⇤p , ⇤q , ⇤ r ;
p = mal loc (8) ;
. . .
q = p ;
. . .
f r e e (p) ;
r = mal loc (8) ;
. . .
. . . = ⇤q ;

Stack based

int ⇤q ;
void f oo () {

int a ;
q = &a ;

}
int main () {

f oo () ;
. . . = ⇤q ;

}

Fig. 1. Examples of dangling pointer in the heap and the stack

The problem of temporal memory safety are typically only found in
low-level programming languages like C and C++. The reason is that
these languages provide low-level control of di↵erent parts of the system,
e.g. manual memory management, hardware control and etc. In higher
level programming languages, often a garbage collector is implemented to
ensure memory safety. This however results in e.g. slower performance.
In the next sections the three main solutions to provide full temporal
memory safety will be explored.

3 Garbage collection

Two types of garbage collectors exist: exact and conservative garbage col-
lectors. Exact garbage collectors can only be used in type safe languages
because the pointers can be identified at run-time. Not type safe program-
ming languages can use conservative collectors, it treats memory locations

as ambiguous references because the pointers cannot be identified at run-
time. Programming languages like C and C++ are not type safe because
pointers can be directly manipulated whereas managed languages like
Java and C#, that are more safely typed, can use the exact collectors [2].
In an ideal case of garbage collectors the definition of garbage is an object
that is not needed anymore, however this definition is hard to implement.
Conservative garbage collectors therefore use di↵erent definitions, e.g. the
tracing garbage collector identifies garbage as unreachable objects.

Conservative collectors must ensure correctness by treating the the
memory locations as ambiguous references. Meaning that pointers are not
known at run-time and the memory is searched for objects. To explain
it further, a location in the memory could look like a pointer, however
actually be a value, and the memory locations pointed to by these pointers
should therefore be reserved. Furthermore the reference could look like
data in which case the memory in that location cannot be altered or
moved.

3.1 Conservative garbage collectors

Much research has been done in garbage collection, in this section the
basic concepts will be explained. For example, the tracing collector, ref-
erence counting collector, semi-space collector and etc. The garbage col-
lectors used today are often a combination of these techniques to provide
better garbage collectors depending on the situation, e.g. Gen Immix is
a copying generational collector [2].

Tracing collector An example of a tracing collector is the mark-sweep
Boehm, Demers, Weiser style (BDW) collector [3]. The tracing collectors
are based on the definition that garbage is an object that is unreachable.
An example of the mark-sweep collector is displayed in Fig. 2. The first
step of the mark-sweep filter is the mark stage in which it will trace
all active objects in the root set and marks objects as ’in-use’ that are
referenced by pointers in the root set. In this case objects A and E are first
marked and then B and C since they are referenced directly or not directly
by the root set. Then in the sweep stage all objects in the memory are
scanned and the objects not marked by ’in-use’ are freed up. The objects
D, F and G are now freed in our example.

The mark and sweep stages result in a temporary halt in the program,
stop and collect approach [4], to locate garbage. The advantage is that
the collector can find unused and hidden garbage so that the stack and

the heap can be cleared. Furthermore searching and clearing the memory
of garbage can take time, the speed will be analysed in the Performance
section.

Fig. 2. Basic example of mark-sweep collector

Reference counting collector Another conservative collector is the
reference counting collector. Reference counting collectors do not trace
the memory stack to find garbage but rely on keeping tab on the amount
of references of an object. The definition of garbage is similar to the BDW
collector, if no references are left than the object will be unreachable and
therefore garbage. When the program changes an object reference, the
reference counter can increment or decrement the counter. An example is
presented in Fig. 3. In the first situation (a) both pointer p and q point
to a distinct integer value(Int a and Int b), both integers have a reference
count of one and will not be removed. Then in the second situation (b),
due to a modification of pointer p, both pointers reference the integer b.
Now integer b has two references and integer a zero, this results in the
deletion of integer a on the memory stack.

The advantage of the reference counting is that it continuously keeps
track of garbage and clear as the programs deallocates an object. This
results in a more predictable collector. Furthermore it does not need to
scan the entire memory to find garbage objects. The downside however is
that for each object a reference count needs to be stored and maintained.
Another problem is the reference-cycle. Reference cycle exist when an ob-
ject directly or indirectly references itself and the object cannot therefore
be removed.

Fig. 3. Basic example of reference counting collector

Semi-space collector Semi space collectors use copying algorithms,
meaning that reachable objects are copied to another address during a
collection [5]. In a classic semi-space collector the available memory is
divided into two equal-size regions, from-space and to-space. During al-
location of an object, memory is allocated in the to-space. If then the
memory is full, the collection phase starts. During a collection, the roles
of the regions are swapped and then only live objects are copied from
the from-space into the to-space. At this moment all the references of the
live objects need to be updated. This is done by storing the forwarding-
addresses of the moved objects during the collection phase.

The advantage of the copying collector to the mark-sweep collector is
that there is no need to keep the list of free memory and fragmentation is
avoided. This is because during collection phase the memory is restruc-
tured via the copying of only live objects. However it requires more mem-
ory because half of the memory cannot be used. Furthermore depending
on the amount of live objects the copying collector can be more e�cient
than the mark-sweep collector. If only a few objects are alive, the collec-
tor does not need to copy as much objects while the mark-sweep collector
always analyses the entire memory.

The semi-space collector has since its introduction been improved
upon, for example the mostly copying collector introduced by Bartlett [6].
The design of the mostly copying collector has since its introduction re-
mained popular [2]. The Bartlett’s collector di↵ers from the classic semi-
space collector in two ways. Firstly, the to- and from-space are logical
spaces comprising of linked lists of pages on the memory. And secondly,
at the start of each collection, pages referenced by an ambiguous root are
promoted. This results in adding the promoted pages into the linked list
of the to-space. The promoted pages are then used as the roots for a final
copying collection phase, in the Bartlett collector it is assumed that all
objects on promoted pages are alive.

Generational collection Generational collection is a basic concept that
is based on the assumption that recent created objects are more likely to
be garbage than objects that have been alive for a longer time. In this case
the heap is often divided in multiple generations. If a object is not directly
cleared, it will be promoted into the next generation. Older generations
are less often checked for garbage because of the assumption that recent
created objects are more likely to be garbage.

3.2 Exact garbage collectors

In type safe programming languages, the type of allocated objects are
known and cannot be misinterpreted. At allocation the type is identi-
fied and during execution the run-time must dynamically identify root
references and free not used resources. The basic concepts of exact collec-
tors are often similar to the previously explained concepts of conservative
collectors.

3.3 Compatibility

Using conservative garbage collector in a new c program ensures that
the programmer does not need to think about memory management a
lot. Some consideration should be taken so that the garbage collector
can work e�ciently. For legacy code using manual memory management,
some adaptation should be considered e.g. removing the manual memory
management.

3.4 Performance

The work by Shahriyar et al. [2] analyses the performance of conserva-
tive garbage collectors. The performance benchmarks where done on a
Ubuntu 12.04.3 LTS server distribution of a 64-bit Linux and the hard-
ware contained a 3.4 GHz, 22nm Core i7-4770 Haswell processor and 8
GB of DDR3-1066 memory. In a full process of a garbage collector, the
collection of garbage and the restructure of the memory, can take for the
BDW collector 255 milliseconds up to 15668 milliseconds, depending on
the benchmark, with a mean of 1956 milliseconds. The reference counter
based conservative collector is a bit faster, with times ranging from 208
milliseconds to 12512 milliseconds with a mean of 1729 milliseconds. This
proves that in case of severe real-time constraints a garbage collector
can cause too long lock-ups because the garbage collector will freeze the
program to provide memory management.

The di↵erences of conservative garbage collectors to their exact vari-
ants are very small. Sharhriyar et al. [2] analysed this di↵erence, the result
is that all the conservative collectors are a bit slower, however with very
little overhead ranging from 1% for the BDW collector to 9.3% for the
most copying collector.

4 Ownership types

To ensure temporal memory safety, ownership type memory management
defines that an object can never refer to another object which has a
possible shorter lifetime. It can be seen as enforcing a topology on the
patterns of references [7]. In this chapter the Rust programming language
[8] will be used to explain ownership types. Rust uses a ownership type
concept for memory safety while preserving performance. The concept of
Rust has three rules: lifetime, ownership and borrowing.

Ownership The first rule we will explore is ownership. The basic idea be-
hind this rule is that variables in the memory are owned through variable
bindings. A variable binding has the property that they have ownership of
what they are bound to, meaning when the binding is no longer valid the
owned memory locations will be freed. A binding can become no longer
valid when e.g. they go out of scope. A first example is shown in Fig. 4.
At the start of the function foo(), vector v is initialised on the stack and
it’s values on the heap. Then at the end of foo(), vector v goes out of its
scope and will therefore expire. Since the vector [1, 2, 3] is owned by v,
the reference v and the vector will be popped from the memory.

Fig. 4. Lifetime of variables in Rust, the scope of variable v is the function foo(). At
the end of foo() the variable v and anything related to it will be cleaned up.

A resource is always bound to exactly one binding, however the re-
source can be re-assigned. In the Fig. 5, the move semantics is displayed.
During initialisation the vector is assigned to v after which the resource
is re-assigned to v2. At that moment the reference v cannot be used since
it does not have ownership of the vector anymore. Another semantic that
can occur, depending on the type of the resource, is called copy. It is as

clear as the name suggest, types like integers can be entirely copied and as
a result keeping the original reference and variable binding. For example,
if in the example of Fig. 5 a integer was created the copy semantic would
have been used instead of the move semantic. In this case a new distinct
integer v2 would have been created while also preserving the integer v.

Fig. 5. Move semantics in Rust, ownership of the vector [1, 2, 3] is passed upon v2 and
the v reference is not assigned and therefore removed.

In case of functions, moving the ownership can get very tedious as
visualised in Fig. 6. Because the vectors v1 and v2 are handed to the
function as input, the ownership is also moved to that function. If the
function would then end without handing the ownership back, the vectors
would go out of scope and be freed in the memory. In this example the
ownership of the vectors are handed back via the return of the function.

Fig. 6. Ownership of variables in functions programmed in Rust. After a function the
ownership needs to be handed back and in this case the function will return the values
as a result of the function.

These rules ensure that only one reference can be used to alter the
referenced data. This protects against e.g. race conditions. Race condition
occur where two independent and parallel running functions try to alter
a resource at the same time. This can result in unexpected value of the
resource.

Borrowing A resource can be borrowed instead of moved to preserve
the original reference. Using the (&T) reference type, the program does

not pass the resource however it passes the reference. This is displayed in
Fig. 7. In this example both vectors are ’borrowed’ to the function foo().
The function foo() can then use the vectors in its calculations, note that
by using &T type an immutable reference is passed. The foo() function
will not be able to change the values of v1 and v2.

Fig. 7. Borrowing a variable in Rust via the immutable reference type.

In Rust two types of references exist: immutable (&T) and muta-
ble (mut T) references. The rules for these types of references are that a
resource can have mutiple immutable references but a resource can only
have one mutable reference. This is done to prevent data races, as men-
tioned before, because now only one reference can be used to write to
a resource and multiple references can be used to read the resource. An
example of the mutable reference is presented in Fig. 8. The mutable ref-
erence is borrowed for y, therefore y can change the resource first pointed
to by x. After the curly braces the scope of reference y ends and the bor-
row and reference y will therefore be freed. Now x has again full control
of the resource.

Fig. 8. Borrowing a variable in Rust via the mutable reference type.

Another memory issue prevented by scope and reference in Rust is
the ’use after free’. As displayed in Fig. 9, in the scope of the brackets
the y reference is replaced with the reference of x. Reference y is now
pointing to resource of x, however after the scope ends (closing bracket),
x will be freed causing the y reference to look like an dangling pointer.
In Rust, further use of the y reference will result in an error.

Fig. 9. Using the resource after freeing it up from memory will result in an error.

Lifetime The concept of Lifetimes in the ownership model of Rust is
complementary to the other concepts to counter errors like the dangling
pointer. For example, if an object is borrowed to a function and this func-
tion decides to deallocate the reference, the reference would be perceived
to be still valid for the original owner, causing a dangling pointer. To
counter this, references are accompanied with lifetimes. This can be done
through implicit or explicit lifetime usage, displayed in Fig. 10. In rust 0a
represents the lifetime of a reference. In the explicit example, the lifetime
0a is passed via the general parameters of a function, via the < .. > input.
Then this lifetime is allocated to the x reference. If the lifetime is not ex-
plicitly added, the compiler will add lifetimes to the objects according to
the lifetime elision rules of Rust.

Fig. 10. Explicit and implicit defining the lifetime of objects

An example on the duration of lifetimes is given in Fig. 11. The lifetime
of an object in Rust is often correlated to the scope in which the variable
is valid. In this example, the reference y and struct f are initialised in

the beginning of the main function. Both variables have the scope of the
main function in which they are valid and this can also be visualised as
the lifetime of the variables.

Fig. 11. An example on the duration of lifetimes

The code in Fig. 12 provides an example on how Rust can prevent
dangling pointers. In the beginning of the main function the variable x is
initialised. Then in another scope, reference y and struct f are initialised.
At that moment the value of x is set as the pointer to the reference x
of the struct f. The problem is that the scope of struct f will end at the
bracket whereas the lifetime of variable x is longer and will only end on
the closing bracket of the main function. Since the lifetimes of x and f.x
do not match, Rust will emit an error.

Fig. 12. An example on how Rust would prevent the dangling pointer

Languages like Rust with ownership types have strict rules that may
inconvenient the programmer to write the application. However, by us-
ing these rules Rust can provide memory safety while also limiting the
overhead of ensuring memory safety.

4.1 Compatibility

If a programmer needs to follow the rules if he wants to use ownership
type memory management, e.g. using Rust requires the programmer to
learn this new language in order to write a program. The same applies
to legacy code, it will need adaptation to another compiler or language
depending on the selected technique.

4.2 Performance

The performance of Rust in terms of pointer usage is very similar to C, as
evaluated by Lin et al. [9]. They compared the implementation of a high
performance garbage collector programmed in C and Rust. The bench-
mark is based upon the time spent on allocating, marking and tracing 50
million objects, results are presented in Table. 1. The benchmark were
run on a computer with Linux kernel version 3.17.0 with a 22nm Intel
Core i7 4770 processor. Rust proves for this application to have a small
overhead in terms of performance, approximately 4ms longer execution
time in case of the alloc and trace benchmark, for the high performance
garbage collector.

Table 1. Average execution time of performance critical paths in high performance
garbage collector programmed in C and Rust.

C Rust (% to C)

alloc 370± 0.1ms 374± 2.9ms(101%)
mark 63.7± 0.5ms 64.0± 0.7ms(100%)
trace 267± 2.1ms 270± 1.0ms(101%)

5 Pointer-based checking

Via fat pointers, pointer-based checking can ensure temporal memory
safety. In this case metadata is stored along with every pointer created,
displayed in Fig. 13. The metadata provides the pointer, information to
provide temporal and spatial memory safety e.g. boundaries of the value
and etc. In this example the metadata is stored together with the pointer,
however this approach does require that existing code’s manual memory
management to be rewritten since a fat pointer utilises more memory.
Using fat pointers will therefore result in a di↵erent memory layout. Ad-
ditionally, unsafe type casts of the pointer can result in corruption of the

metadata. These problems has been solved by disjoint metadata storage,
for example storage in a Trie structure in the CETS implementation cre-
ated by Nagarakatte et al. [1]. Another solution is to use shadow memory,
implemented by Nagarakatte et al. [10]. In this type of metadata storage,
a distinct memory is used to store the metadata of the pointers. The
disadvantage of disjoint metatdata storage to fat pointers is that the ac-
cesses(checking the metadata) are slower.

Fig. 13. Memory layout di↵erences of regular and fat pointer

Using SoftBoundCETS as example, each pointer is paired with two
objects, the key and the lock. They key is an allocation identifier and
the lock is a reference to a location in the memory called the lock lo-
cation. If the key and the value in the lock location are the same then
the pointer is still valid. The key and lock are used so that a validation
check of the pointer is a simple load and comparison of the key and lock
location. Temporal safety is thus ensured by allocation and checking of
the metadata, pictured in Fig 14. On allocation of a pointer, metadata
is created(Fig. 14a) to fit the description of the allocated memory, for
temporal safety a key, lock reference and the lock location objects are
created. If a pointer is then freed, the metadata will be invalidated and
locked by changing the value of the key or lock location(Fig. 14b). After
invalidation the pointer will not be usable. If the pointer is addressed a
validation check is performed by reading and comparing the key value
and the lock location value(Fig. 14c). Spatial checks are also present and
consist of boundary checking, however this will not be discussed further.

Metadata storage The metadata consist of base and bound object for
spatial memory safety and the key and lock object for temporal memory
safety, pictured in Fig. 15. Furthermore in SoftBoundCETS a shadow
space is used to store the pointers. This is done to prevent corruption and
leaves the memory layout intact. In the example, there are two pointers p
and q each pointing to a distinct location. With each pointer metadata is

Fig. 14. How pointer-based checking can ensure temporal memory safety. (a) Creation
of a fat pointer, (b) metadata invalidated on deallocation, (c) lock and key checking,
and (d) bounds spatial check

stored in the shadow memory. The di↵erence between the two metadata
objects is only the spatial objects, base and bound object, because the
location and boundary is di↵erent for each pointer. The temporal objects
are however the same since both locks references the same lock location
and both pointers are valid.

Fig. 15. Storage of metadata for each pointer in shadow memory of SoftBoundCETS

Disjoint storage To store the metadata in a disjoint space a couple
of considerations need to be taken into account, how are the metadata
locations mapped to the memory locations, is metadata provided for all
memory locations and when is the metadata updated. For the SoftBound-
CETS project, it was chosen to use a two level trie data structure that
maps the entire virtual address space, the entries in the trie are only al-
located on creation of the metadata. In this project the metadata is only
stored for pointers in the memory and performs metadata loads only when
value written to the memory contains a pointer.

Pointer-based checking techniques e.g., SoftBoundCETS project, only
perform the memory safety checks to provide more reliable programs. The
programmer still needs to manually manage the memory. Furthermore the
advantage of the SoftBoundCETS project is that the programmer does
not need to alter his program because the memory layout will not change.

5.1 Compatibility

A program in C with pointer-based checking does not require additional
adaptation if the SoftBoundCETS project is used and therefore provid-
ing high compatibility. For example, legacy code with manual memory
management does not require change of the code, it only requires the
developer to use a di↵erent compiler so that the pointer based checking
features are used.

5.2 Performance

A performance evaluation of the SoftBoundCETS instrumentation is done
by Nagarakatte et al. [11]. The evaluation is based on benchmarks e.g.,
lbm, go, equake and etc., to analyse the overhead of the full checking i.e.,
enforcing both spatial and temporal safety, and the overhead of temporal
and spatial safety checking separately. The average overhead caused by
the pointer-based checking is 108% or in other words the execution time
with full checking takes the program 2.08 times longer. For providing only
temporal safety the average overhead is approximately 40% or 1.4 times
longer execution.

6 Conclusion

In the previous chapters temporal memory safety is explored via the three
main techniques, garbage collection, ownership type and pointer based
checking. All of the three techniques have their own trade-o↵s resulting
in that the usage will depend on the application requirements. In the
first case of garbage collection all memory management can be controlled
via the garbage collector and the programmer does not need to worry
about memory management. The downside of garbage collectors is the
large performance overhead caused by checking and managing the mem-
ory and the lock-up it provides, therefore garbage collection is not very
usable in real time applications. The major advantage is the abstraction it
provides to memory management because manual memory management

is no longer needed. The second technique, Ownership types is explained
via the language Rust. The major advantage of ownership types is its
low performance overhead, the downside however is that it requires the
programmer to follow some programming rules, in the Rust language:
scope, borrowing and lifetime rules. The last explained countermeasure
to temporal errors is pointer-based checking. It provides checks to counter
temporal errors but does require the programmer to manage the memory
as originally. Depending on the implementation used, the programmer
also may need to take the fat pointers into account which can change
the memory layout. Furthermore the overhead caused with full memory
safety is a bit larger than the ownership type performance but is lower
and more predictable than the garbage collector approach.

References

1. S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “CETS: Compiler-
Enforced Temporal Safety for C,” Proceedings of the 2010 international symposium
on Memory management - ISMM ’10, p. 31, 2010.

2. R. Shahriyar, S. M. Blackburn, and K. S. McKinley, “Fast conservative garbage
collection,” Proceedings of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages & Applications - OOPSLA ’14, pp. 121–
139, 2014.

3. A. Demers, M. Weiser, B. Hayes, H. Boehm, D. G. Bobrow, and S. Shenker, “Com-
bining Generational and Conservative Garbage Collection: Framework and Imple-
mentations,” 17th Annual ACM Symposium on Principles of Programming Lan-
guages, pp. 261–269, 1990.

4. H.-J. Boehm and M. Weiser, “Garbage collection in an uncooperative environ-
ment,” Software: Practice and Experience, vol. 18, pp. 807–820, sep 1988.

5. R. R. Fenichel and J. C. Yochelson, “A LISP garbage-collector for virtual-memory
computer systems,” Communications of the ACM, vol. 12, pp. 611–612, nov 1969.

6. J. F. Bartlett, “Compacting Garbage Collection with Ambiguous Roots,” ACM
SIGPLAN Lisp Pointers, vol. 1, no. 6, pp. 3–12, 1988.

7. T. Zhao, J. Baker, J. Hunt, J. Noble, and J. Vitek, “Implicit ownership types for
memory management,” Science of Computer Programming, vol. 71, no. 3, pp. 213–
241, 2008.

8. N. D. Matsakis and F. S. Klock, “The rust language,” Proceedings of the 2014
ACM SIGAda annual conference on High integrity language technology - HILT
’14, vol. 34, no. 3, pp. 103–104, 2014.

9. Y. Lin, S. M. Blackburn, A. L. Hosking, and M. Norrish, “Rust as a language for
high performance GC implementation,” in Proceedings of the 2016 ACM SIGPLAN
International Symposium on Memory Management - ISMM 2016, (New York, New
York, USA), pp. 89–98, ACM Press, 2016.

10. S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Everything You Want to
Know About Pointer-Based Checking,” LIPIcs - Leibniz International Proceedings
in Informatics, vol. 32, p. 208, 2015.

11. S. G. Nagarakatte, Practical Low-overhead Enforcement of Memory Safety for C
Programs. PhD thesis, University of Pennsylvania, 2012.

